skip to main content


Search for: All records

Creators/Authors contains: "Alkan, ed., Can"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    Differential abundance analysis is an essential and commonly used tool to characterize the difference between microbial communities. However, identifying differentially abundant microbes remains a challenging problem because the observed microbiome data are inherently compositional, excessive sparse, and distorted by experimental bias. Besides these major challenges, the results of differential abundance analysis also depend largely on the choice of analysis unit, adding another practical complexity to this already complicated problem.

    Results

    In this work, we introduce a new differential abundance test called the MsRDB test, which embeds the sequences into a metric space and integrates a multiscale adaptive strategy for utilizing spatial structure to identify differentially abundant microbes. Compared with existing methods, the MsRDB test can detect differentially abundant microbes at the finest resolution offered by data and provide adequate detection power while being robust to zero counts, compositional effect, and experimental bias in the microbial compositional dataset. Applications to both simulated and real microbial compositional datasets demonstrate the usefulness of the MsRDB test.

    Availability and implementation

    All analyses can be found under https://github.com/lakerwsl/MsRDB-Manuscript-Code.

     
    more » « less
  2. Abstract Summary

    HiCube is a lightweight web application for interactive visualization and exploration of diverse types of genomics data at multiscale resolutions. Especially, HiCube displays synchronized views of Hi-C contact maps and 3D genome structures with user-friendly annotation and configuration tools, thereby facilitating the study of 3D genome organization and function.

    Availability and implementation

    HiCube is implemented in Javascript and can be installed via NPM. The source code is freely available at GitHub (https://github.com/wmalab/HiCube).

     
    more » « less
  3. Abstract Motivation

    The advancement of high-throughput technology characterizes a wide variety of epigenetic modifications and noncoding RNAs across the genome involved in disease pathogenesis via regulating gene expression. The high dimensionality of both epigenetic/noncoding RNA and gene expression data make it challenging to identify the important regulators of genes. Conducting univariate test for each possible regulator–gene pair is subject to serious multiple comparison burden, and direct application of regularization methods to select regulator–gene pairs is computationally infeasible. Applying fast screening to reduce dimension first before regularization is more efficient and stable than applying regularization methods alone.

    Results

    We propose a novel screening method based on robust partial correlation to detect epigenetic and noncoding RNA regulators of gene expression over the whole genome, a problem that includes both high-dimensional predictors and high-dimensional responses. Compared to existing screening methods, our method is conceptually innovative that it reduces the dimension of both predictor and response, and screens at both node (regulators or genes) and edge (regulator–gene pairs) levels. We develop data-driven procedures to determine the conditional sets and the optimal screening threshold, and implement a fast iterative algorithm. Simulations and applications to long noncoding RNA and microRNA regulation in Kidney cancer and DNA methylation regulation in Glioblastoma Multiforme illustrate the validity and advantage of our method.

    Availability and implementation

    The R package, related source codes and real datasets used in this article are provided at https://github.com/kehongjie/rPCor.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Summary

    Genomics has become an essential technology for surveilling emerging infectious disease outbreaks. A range of technologies and strategies for pathogen genome enrichment and sequencing are being used by laboratories worldwide, together with different and sometimes ad hoc, analytical procedures for generating genome sequences. A fully integrated analytical process for raw sequence to consensus genome determination, suited to outbreaks such as the ongoing COVID-19 pandemic, is critical to provide a solid genomic basis for epidemiological analyses and well-informed decision making. We have developed a web-based platform and integrated bioinformatic workflows that help to provide consistent high-quality analysis of SARS-CoV-2 sequencing data generated with either the Illumina or Oxford Nanopore Technologies (ONT). Using an intuitive web-based interface, this workflow automates data quality control, SARS-CoV-2 reference-based genome variant and consensus calling, lineage determination and provides the ability to submit the consensus sequence and necessary metadata to GenBank, GISAID and INSDC raw data repositories. We tested workflow usability using real world data and validated the accuracy of variant and lineage analysis using several test datasets, and further performed detailed comparisons with results from the COVID-19 Galaxy Project workflow. Our analyses indicate that EC-19 workflows generate high-quality SARS-CoV-2 genomes. Finally, we share a perspective on patterns and impact observed with Illumina versus ONT technologies on workflow congruence and differences.

    Availability and implementation

    https://edge-covid19.edgebioinformatics.org, and https://github.com/LANL-Bioinformatics/EDGE/tree/SARS-CoV2.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less